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Abstract

Rules are an e�cient feature of natural languages which allow speakers to use a
finite set of instructions to generate a virtually infinite set of utterances. Yet, for many
regular rules, there are irregular exceptions. There has been lively debate in cognitive
science about how individual learners acquire rules and exceptions; for example, how
they learn the past tense of preach is preached, but for teach it is taught. However, for
most population or language-level models of language structure, particularly from the
perspective of language evolution, the goal has generally been to examine how languages
evolve stable structure, and neglects the fact that in many cases, languages exhibit ex-
ceptions to structural rules. We examine the dynamics of regularity and irregularity
across a population of interacting agents to investigate how, for example, the irregular
teach coexists beside the regular preach in a dynamic language system. Models show
that in the absence of individual biases towards either regularity or irregularity, the
outcome of a system is determined entirely by the initial condition. On the other hand,
in the presence of individual biases, rule systems exhibit frequency dependent patterns
in regularity reminiscent of patterns in natural language. We implement individual
biases towards regularity in two ways: through ‘child’ agents who have a preference to
generalise using the regular form, and through a memory constraint wherein an agent
can only remember an irregular form for a finite time period. We provide theoretical
arguments for the prediction of a critical frequency below which irregularity cannot
persist in terms of the duration of the finite time period which constrains agent mem-
ory. However, within our framework we also find stable irregularity, arguably a feature
of most natural languages not accounted for in many other cultural models of lan-
guage structure. Keywords: linguistic rules; morphology; language evolution;

language development; memory
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1 Introduction

A striking feature of human language is its vast expressive power (Pinker & Jackendo↵,

2005): human languages e↵ortlessly convey everything from concrete, specific objects (e.g.,

spacebar) to broad, abstract concepts (e.g., fairness). The rule-based structure of human

languages is key to this expressive power: word formation rules allow for new compounds

(spacebar) or derivations (fairness) that speakers and hearers can readily parse. Rules

allow speakers to use a finite set of instructions to generate scores of valid utterances, and

allow new words to nestle into an existing language seamlessly. For example, knowing a

suite of verb inflection rules even allows speakers to readily integrate entirely new (rather

than derived or compounded) words into common usage (e.g., Google ! Googled).

The apparent power of rules raises an interesting question: why are there irregular

exceptions at all? Since rules are both productive and cognitively e�cient (Trudgill, 2010;

Gildea & Jurafsky, 1996; Thagard, 2005), why don’t all aspects of a language obey the dom-

inant rules? In fact, as much as rules are a universal of human languages, so are exceptions:

from the phonological (e.g., disyllabic nouns are generally stressed on the first syllable as

in apple and table, but some nouns like hotel exhibit stress on the second syllable1) to the

morphological (e.g., in noun pluralisation, goose-geese, not *gooses). Considerable study

has been devoted to how language learners acquire a system with inconsistent structure

(i.e., structure that may have highly frequent and idiosyncratic exceptions), but how lan-

guages support any irregularity at all, given that consistent structure is both easier to learn

and more productive, remains a largely open question.

The question of how individual learners - particularly children - process and acquire

exceptions has become central for both cognitive scientists and linguists (Pinker & Ull-

man, 2002). In particular, the formation of the simple past-tense in English has been a

battleground for the debate. Previous investigations have focused on what specific cog-

nitive mechanisms underlie the process of acquiring and producing rules and exceptions

for individuals (see Pinker & Ullman, 2002; McClelland & Patterson, 2002 for a review).

Extreme perspectives have argued on the one hand for a single cognitive mechanism un-

derlying inflectional rules and exceptions (Rumelhart & McClelland, 1986; McClelland &

Patterson, 2002), and on the other hand for qualitatively di↵erent levels of processing for

rules and exceptions (Pinker & Ullman, 2002; Pinker, 1999). An emerging middle ground

in this debate suggests that rather than rules and exceptions, the past tense is governed by

1c.f. (Robinson, Hank, Mike, & Gee, 1979) for a notable exception to this exception.
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a set of ‘rules in competition’ (Yang, 2002; see also Albright & Hayes, 2003 for a ‘stochastic

rules’ perspective). More recently, Tabor, Cho, and Dankowicz (2013) have shown using

recurrent neural networks that a single learning mechanism can lead to the appearance of

separate mechanisms for regularity and irregularity.

The goal of this paper will be to engage in this debate from a complex systems perspec-

tive, asking how the dynamics of rules function across a language as used by a population

of individuals, rather than at the level of individual cognitive architecture. While a study

of individual cognitive architecture is a necessary component to understanding regularity

in language, the dynamics of regularity in a language system may be more than a simple

function of extending what we know about individuals across a population. Indeed, given

the cognitive e�ciency of clean, consistent rules for an individual learner, the persistence

of irregularity requires some explanation which goes beyond the individual learner. Rather

than considering how an individual creates an internal rule-set which accommodates some

exceptions (or multiple rules) in the language they speak, a dynamic systems perspective

focuses on how a language system sustains irregularity despite the individual cognitive

e�ciency of a single regular rule. In other words, rather than seeking to explain how

individuals learn and use a system with rules and exceptions, we aim to investigate why

exceptions persist within the system at all.

Previous research in this area suggests a key relationship between irregularity and

frequency (Lieberman, Michel, Jackson, Tang, & Nowak, 2007; Bybee, 2007; Carrol, Svare,

& Salmons, 2012; Cuskley et al., 2014): since frequency contributes to overall diachronic

stability of linguistic variants (Pagel, Atkinson, & Meade, 2007; Pagel, Atkinson, Calude,

& Meade, 2013), more frequent items are better able to sustain irregularity over time.

From a system perspective, some corpus work has suggested that irregularity is unstable,

in a state of constant ‘decay’ to the regular form (Lieberman et al., 2007). Some models

of language evolution also suggest that learner biases function to reduce irregularity in

language (e.g., ?, ?). However, using a larger historical corpus, a recent study suggests

that much irregularity is largely stable over time (Cuskley et al., 2014), although there is

some evidence of a transition in regularity dependent on frequency.

This paper will expand on the dynamic systems perspective on regularity by exam-

ining how competing rules function within a population of interacting artificial agents.

The individual processing focus of previous research on the past tense has concentrated

on models of individual learning, attempting to create single agents who, given some min-

imal linguistic input, learn a reasonable approximation of the past-tense much like a child
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learner would (e.g., see Pinker & Ullman, 2002; McClelland & Patterson, 2002 for a short

overview). Instead, we apply a population and interaction-based approach to the problem,

after a growing body of research which considers social processes as a key force in language

dynamics (Kirby, Cornish, & Smith, 2008; Kirby & Hurford, 2002; Steels, 2011; Loreto

& Steels, 2007). However, far from neglecting the importance of individual biases, this

approach shows these individual cognitive biases are essential to recovering the dynamics

we observe in natural language, and are magnified within the system through interaction

and transmission (Kirby, Dowman, & Gri�ths, 2007).

This approach fills a particular hole in the literature: while investigations of how indi-

viduals accommodate regularity and irregularity are fairly mature, detailed examinations

of how and why language, as a large, generally rule-governed system, even has irregularity

at all. While frequency has been suggested as a major player in this regard, there is con-

siderable disagreement regarding the dynamics of regularity. Some studies have suggested

that irregularity could decay or dissappear entirely; in other words, all verbs will eventually

move towards the regular form, given su�cient time (Lieberman et al., 2007). However,

recent data from a large historical corpus suggests that irregularity is fairly stable over

time, rather than being in a process of inevitable decay (Cuskley et al., 2014). Irregularity

is ubiquitous across di↵erent levels of a language, and also across diverse languages more

generally, suggesting that irregularity is, in fact, a stable feature of language. While many

cultural and dynamic systems approaches to language have sought to explain the emer-

gence and sustainability of structure or rules across a population (Kirby et al., 2008; Kirby

& Hurford, 2002; Steels, 2005; Kirby, Tamariz, Cornish, & Smith, 2015), few account for

the fact that irregularity is also pervasive (for a notable exception, see Kirby, 2001).

We present a new model to examine linguistic rule dynamics - particularly the per-

sistence of irregularity - modelled after a similar treatment of lexical dynamics known as

the Naming Game (Steels, 1995; Loreto & Steels, 2007). In the Naming Game (NG), a

population of agents interact over a pre-specified time scale measured by the number of

pairwise games across the population (see also Centola & Baronchelli, 2015 for an exper-

imental version of the game). In each “game”, two agents are chosen to interact about

a particular meaning, with one agent randomly assigned the role of speaker (S) and the

other the role of hearer (H). The interaction consists of two core steps:

1. S sends H a string to represent the meaning; S chooses the string based on an

inventory which has accumulated for the meaning over previous interactions (or, if S
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has no inventory, a random string is invented). H guesses a meaning based on the

transmitted string (if the string is absent from her inventory, she randomly guesses

a meaning).

2. S and H update their inventories for the meaning according to predefined update

rules, generally:

• If H chooses the correct meaning, the interaction is considered a communicative

success, and both agents keep the string-meaning pair.

• If H chooses the incorrect meaning, communication is unsuccessful, S and/or

H update their inventories based on the interaction; depending on the specific

rules, they may disregard other form-meaning pairings or update weights to

pairs in their inventory.

Using this simple model, populations which are initially unsuccessful at communication,

having a broad range of random labels for a particular meaning, eventually converge on

shared conventions to refer to meanings. The update rules for agents can be as simple as

the H discarding their previous inventory and adopting the S’s form (Baronchelli, Felici,

Caglioti, Loreto, & Steels, 2006; Baronchelli, Loreto, & Steels, 2008), or can be more

complex, involving di↵erent weights for forms over time depending on their communicative

success in previous interactions (Wellens, Loetzch, & Steels, 2008).

While the original NG investigates how agent interaction leads to convergence on nam-

ing conventions, the current investigation adapts this general framework to focus on how a

population of agents converges on shared rules or exceptions for a particular type. For ex-

ample, how the word walk - and indeed, most verb types - inflect with the regular (roughly,

add -ed) rule, while a verb type like string retains its strong umlaut form (strung). Our

adaptation retains the basic speaker-hearer interaction at the core of the NG, but rather

than inventories of strings applying to meanings, agents have inventories of inflections that

can be applied to verb types. Given the established role of frequency in stability and reg-

ularity (Pagel et al., 2013; Cuskley et al., 2014; Bybee, 2007), verb types have di↵erent

frequencies, wherein some verb types are used more in interaction than others.

We begin by outlining the basic structure of the models, and presenting previous find-

ings showing how NG dynamics for rules function in the most basic case: where agents’

inventories can be altered only through interaction, with no biases favouring either the

regular or the irregular form. We then consider two more complex cases where agents
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have individual biases towards the regular form. First, we consider a child learner bias,

implemented as a rate of replacement of “mature” agents with “child” agents who have a

bias towards the regular form for verbs which they have not encountered (i.e., are Stage

2 learners as outlined in Rumelhart & McClelland, 1986). Second, we consider a more

general memory constraint, wherein agents retain forms only for a particular temporal

window, falling back on the regular form when this window has elapsed.

2 Method: The NG for rule dynamics

We use a minimal model adapted from the NG to investigate the dynamics of rules in

competition over time, under the conditions of a fixed population size on a randomly

connected network2. The model consists of N agents interacting over verb types defined

by their frequency, f . For each agent, a lemma can potentially have one of three inflectional

states: regular (R), irregular (I), or mixed (M).

In the mixed state, agents have a coexistent inventory of the R and I states, much like

for some verbs (e.g., sneak) where English speakers find both regular (sneaked) and irregu-

lar (snuck) variants somewhat acceptable (Dale & Lupyan, 2012), and may even use them

in seemingly free variation (Pinker & Prince, 1994). This implementation conceptualises

regular and irregular inventories simply as di↵erent rules, allowing for the coexistence of

competing rules within a single individual in the form of the M state (i.e., intraspeaker

variation). The existence of the M state not only has psychological and linguistic validity,

but analytical results show that it is crucial to recovering the type of frequency dependent

transition observed in actual data (Colaiori et al., 2015).

Table 1 shows the interaction rules adapted from the basic NG (Baronchelli et al.,

2006), and more broadly applicable to three-state dynamics in other realms (Colaiori et

al., 2015). Although we adopt this set of rules throughout, see (Colaiori et al., 2015) for a

detailed analytical treatment which allows for a prediction of the stable end-state dynamics

of any three-state rule set with replacement.

At each interaction, a speaker (S) and a hearer (H) are randomly chosen from the

population to engage in an interaction according to the rules outlined above. At any

given interaction, the probability of interacting over a particular lemma is defined by its

2See e.g., Dall’Asta, Baronchelli, Barrat, & Loreto, 2006 for the minimal NG version on more complex,
realistic networks; here we focus on the simplest population architecture in order to get a basic picture of
rule dynamics.
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Before After

Speaker Hearer Speaker Hearer

R R ! R R
R I ! R M
R M ! R R
I R ! I M
I I ! I I
I M ! I I
M(R) R ! R R
M(I) R ! M M
M(R) I ! M M
M(I) I ! I I
M(R) M ! R R
M(I) M ! I I

Table 1: Rules for interaction in the model. A speaker is in the mixed state chooses to
utter the R or I inflection with equal probability. Throughout the paper, M(R) indicates
an agent in the mixed state who choses a regular inflection for an utterance, while M(I)
indicates a mixed agent who choses an irregular inflection for an utterance.

f . In other words, if a lemma’s f = 0.1, the lemma will be the topic of one in every 10

interactions. We consider a total of N interactions to encompass a single time step, t, under

the assumption that given the homogenous mixing there is the possibility for each agent to

have the role of speaker and hearer after N interactions. For all agent-based simulations,

we examine an N = 1000 and t
max

= 10, 000 (i.e., a total of Nt
max

interaction events). We

characterize the stable stationary end state of a system in terms of the proportion of agents

in the population with an irregular inflection (⇢s
I

). The inclusion of the M as potential

inflection in the starting condition for the model has little e↵ect on the end-state outcome

(discussed in further detail in Basic Dynamics, below). Thus, in the following models we

consider di↵erent initial values of ⇢0
I

(and thus, ⇢0
R

) in the population, with the M state

arising only as a consequence of an agent encountering both R and I forms in interaction.
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3 Results & Discussion

3.1 Basic dynamics

Prior to investigating mechanisms of replacement and memory constraints, it is important

to understand the case where no such mechanisms operate. This is analogous to the basic

Naming Game (NG) outlined in (Baronchelli et al., 2008), and covered in more detail

with respect to regularity by Colaiori et al. (2015). We provide a brief treatment of this

case here, in order to better understand the dynamics which result from implementing

replacement and memory constraints.

Without any mechanisms to bias agents towards the regular or irregular form, and given

that interaction rules favour no particular inflectional state (as outlined in Table 1), the

end state of a rule system is dependent entirely on the initial condition of the population.

In other words, the f of a lemma has no bearing on its regularity. Instead, the proportion of

starting agents with a regular or irregular inflection determines the end regularity state (a

process generally true of three-state systems of interaction with unbiased rules; Baronchelli

et al., 2008, also found in Colaiori et al., 2015). Any given system eventually converges on

a stable solution which is either entirely regular or entirely irregular, with no remaining

agents in the M state.

If the population is very large, the relationship between the initial ⇢
I

and ⇢
R

gives a

deterministic prediction of the end state: if ⇢0
I

> ⇢0
R

(or ⇢0
R

> ⇢0
I

), the system unavoidably

resolves to an irregular (or regular) stationary state (Colaiori et al., 2015). Notice that,

since ⇢0
M

= 0 these conditions are equivalent to ⇢0
I

> 1/2 (⇢0
I

< 1/2). As the population

size N becomes smaller, the criterion becomes probabilistic. In other words, for a starting

⇢
I

> ⇢
R

, the system will have a higher probability of converging to an irregular state, while

given a starting ⇢
I

< ⇢
R

, the system will have a higher probability of converging to an

entirely regular state. Figure 1 shows how di↵erent starting ⇢
I

and ⇢
R

drift toward an end

state that is entirely regular or irregular, with the outcome becoming more deterministic as

the population size increases (see Colaiori et al., 2015 for further detail). In summary, this

basic model shows that, under these simple conditions, the regularity of a given lemma is

unrelated to its frequency, and dependent only on the relationship between initial ⇢
I

and

⇢
R

across the population.

This means that a population of agents with no implementation of individual cogni-

tive biases towards regularity does not give rise to a system with a frequency dependent
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Figure 1: Basic dynamics. Plot of the probability to end in a fully irregular state
as a function of the initial fraction of irregulars, for several population sizes N . Under
conditions of simple interaction according to rules outlined in Table 1, a rule system resolves
to either an entirely regular or irregular state. For a very large population, the end state is
determined univocally by the the majority in the initial state: the system resolves to the
R state if ⇢0

I

< 1/2, and to the I state if ⇢0
I

> 1/2. For smaller populations the transition
is smoother.

transition. In other words, interaction and coordination among agents with no biases can-

not recover the transition observed in rule dynamics in natural language (Cuskley et al.,

2014; Lieberman et al., 2007; Bybee, 2007). In some sense, this result is intuitive: since

linguistic rule systems are not only the product of simple interaction, but of interaction

between “agents” with complex neural structures and biases. It is unsurprising that with-

out any biases, the system behaves unrealistically; agents with an improbably blank slate

give rise to a system qualitatively unlike what we observe in natural language. In fact,

earlier adaptations of the NG have also shown that individual biases combine with inter-

action in non-trivial ways to produce features found in natural language systems (Puglisi,

Baronchelli, & Loreto, 2008; Loreto, Mukherjee, & Tria, 2012). This makes it particularly

important to investigate how biases combine with interaction to give rise to the sorts of

frequency dependent dynamics observed in natural language.
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3.2 Child learner bias

Child learners have a bias towards regular forms during early learning (i.e., are Stage 2

learners after Rumelhart & McClelland, 1986). In other words, children tend to follow a

U-shaped learning curve (Gershko↵-Stowe & Thelen, 2004) wherein their inflection perfor-

mance is at first very high as a result of rote learning a finite set of items, but as this set

grows they begin to engage in rule generalisation and over-regularise some verbs in produc-

tion (e.g., produce “goed” instead of “went”; see Maslen, Theakston, Lieven, & Tomasello,

2004).

This bias itself is undoubtedly internally complex in real language processing, and much

debate has centered around whether it arises while processing is still refining divisions

between the word and rule level (Pinker & Ullman, 2002), or whether it is the result

of general statistical learning mechanisms which are refined with input (McClelland &

Patterson, 2002). For this model, we take the fact of over-regularisation as an important

factor in linguistic outcomes (Sanko↵, 2008), but do not speculate on its internal nature.

In other words, we do not aim to address exactly how language users acquire or implement

this sort of bias (a topic covered in significant detail by earlier work, e.g.,Pinker, 1999;

Pinker & Ullman, 2002; Plunkett & Juola, 1999; Bybee & Slobin, 1982, among others).

Rather, in our model, “child” agents exhibit a uniform “built-in” bias towards regularity:

they assume a regular inflection for all lemmas in their inventory in initial production, only

acquiring irregular forms through interaction.

Biased “child” agents enter the model through simple replacement : “adult” agents

are replaced at a probabilistic rate, r. Practically, this is implemented by choosing a

single agent from the population randomly at each interaction, and replacing them with a

probability r. Analytical results show that the relationship between r and f (frequency)

is most relevant (Colaiori et al., 2015), therefore we explore a single value of r (r = 0.01)

over a range of frequencies. Practically, this value means that at a given interaction there

is a 1% chance that a random “adult” agent will be replaced with a child; accordingly, over

the course of a single unit of t, approximately 1% of the total population will have been

replaced. In order to keep the model minimal, we do not consider growth of the population;

rather, r is envisioned more usefully as a constant rate of turnover in a population with a

fixed size.

As with the basic model outlined in the previous section, the end state of a system is

at least partially dependent on the starting condition. However, introducing replacement
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also introduces frequency dependence, giving di↵erent outcomes in regularity for di↵erent

lemmas as a function of their f . Figure 2 shows the probability that a given run will end

in a state with a positive fraction of irregularity (⇢s
I

), as well as the average value of ⇢s
I

for

several values of ⇢0
I

.
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Figure 2: Naming Game model with replacement. The graph on the left shows the
probability that the system will end up in a state with some positive fraction of irregularity
(⇢s

I

) plotted against frequency, f . Results for three di↵erent initial fractions of irregularity
are shown (⇢0

I

). The graph on the right shows the average value of ⇢s
I

as a function of f ,
again for three di↵erent initial values of ⇢0

I

. These show that a certain level of irregularity is
necessary in order for it to stabilise and persist within the population, demonstrating that
the initial condition has some bearing on the final state. However, systems with su�cient
initial irregularity, >⇡ 0.38 display clear frequency dependent transitions.

The case ⇢0
I

= 1 is particularly interesting to test what happens to irregular verbs over

time, particularly given previous claims that irregular verbs decay slowly to the regular

form (Lieberman et al., 2007). In other words, what happens to a completely irregular verb

over time given the pressure from incoming child learners to conform to the regular rule?

The behaviour of the case where ⇢0
I

= 1 displays a clear discontinuous change in regularity

in agreement with analytical models (Colaiori et al., 2015) and more reminiscent of the

patterns found more recently in natural language data (Cuskley et al., 2014). In other

words, under some conditions, verbs stabilise in a predominantly irregular state. All verbs

below a certain frequency f ⇡ 0.16 become completely regular. Above this value, with a

probability close to 1, verbs remain predominantly irregular, although a sizeable fraction of

the agents adopt the regular inflection. Even for highly frequent forms, no lemma exhibits

complete, consistent irregularity, even at the highest values of f (this could be considered
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analogous to the roughly 4% over-regularisation rate found in corpora of child speech,

Marcus, 1996, which would indicate that a totally comprehensive corpus would include

regularisations even of verbs uncontroversially considered to be irregular). As the fraction

of irregulars in the initial condition becomes smaller, the change of behaviour occurs for

larger frequencies and is less abrupt. If the initial fraction of irregulars gets smaller than

a threshold ⇡ 0.38 all verbs become fully regular, regardless of their frequency.

3.3 Memory constraints

In this model, we implement constraints on individual agents’ memory: accurate recall

of an inflection relies both on the cumulative number of encounters with a lemma as

well as time elapsed since last encounter (Rodi, Loreto, Servedio, & Tria, 2015; Noviko↵,

Kleinberg, & Strogatz, 2012). Earlier work on individual learning models of the past tense

in English have shown memory constraints, particularly as they relate to frequency, to be

an important factor in over-regularisation errors in children (Marcus, 1996). However, this

memory constraint can be considered domain general, applying not only for linguistic rules,

but also, for example, to visual memory (Logie, 2014), as well as more complex learning

tasks (e.g., studying an academic subject, Rodi et al., 2015).

The memory constraint is implemented in terms of deterministic loss of the irregular

form (and reversion to the regular form) after a certain amount of time, unless the agent

is involved in interactions about the lemma, thus refreshing her memory. In other words,

each agent has a time window, W , for each lemma within which they can recall the I form.

Each time an agent encounters a lemma, there is a refresh event: the time of last encounter,

t
l

, is re-set to the current time, and total elapsed time since the last irregular encounter,

⌧ , is updated: ⌧ = t � t
l

. At every interaction, if ⌧ > W , then the temporal window has

elapsed and the agent will revert to the R form (although I can be re-acquired through

interaction; see Table 1). As with the previous model, we assume a fixed population size.

Under these conditions, the initial value of the window for each lemma largely deter-

mines the behaviour of di↵erent frequencies, much like the value for r in the replacement

model. For the following models we consider a W
t0 = 100, and provide a more general

theoretical treatment which can account for other values of W
t0 in Section 3.3.3. First,

we examine the case where the window is fixed (Section 3.3.1), resulting in transitional

outcomes reminiscent of replacement. Second, we allow the window to grow linearly, de-

pendent on the total number of encounters with a verb, k (Section 3.3.2). Finally, we
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provide a brief theoretical treatment of the relationship between frequency and memory

constraints.

3.3.1 Fixed window

Figure 3 shows results for a fixed W = W(t=0) = 100. The resulting dynamics look much

like replacement, although the location of the frequency dependent transition is lower, given

that the e↵ective rate of reversion to the R form is lower than for r = 0.01, an issue which

is covered in more detail below (Section 3.3.3). For a system which starts in the completely

irregular state, the transition occurs between 0.015 < f
c

< 0.02. This transition is slightly

shifted with a lower ⇢0
I

= 0.6, while for a ⇢0
I

= 0.3 no irregularity remains in the system at

all.
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Figure 3: Naming game with a fixed forgetting window. The graph on the left
shows the probability that the system will end up in a state with some positive fraction of
irregularity (⇢s

I

) plotted against frequency, f . Results for three di↵erent initial fractions
of irregularity are shown (⇢0

I

). The graph on the right shows the average value of ⇢s
I

as a
function of f , again for three di↵erent initial values of ⇢0

I

. Results for a fixed forgetting
window are almost identical to replacement.

3.3.2 Expanding window

In the basic case of forgetting presented above, agents have a static value of W determined

at the start of the simulation and constant across all lemmas. Here, we test the condition

where the window for a given lemma in an agent expands each time the lemma is encoun-

tered. This is reminiscent of expanded retrieval and spacing e↵ects in memory, wherein
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information is better retained when the intervals at which it is reinforced are optimally

spaced and/or expand with each reinforcement (Baddeley, 1997). Such e↵ects are not only

domain general, but have also been shown to hold for learning in other animals (e.g., rats

and pigeons; Balota, Duchek, & Logan, 2007), and have been confirmed in theoretical

models (see e.g., Noviko↵ et al., 2012 for the spacing e↵ect and e.g., Ebbinghaus, 1885

for expanded retrieval) as well as artificial learning networks (Rodi et al., 2015). Here we

implement an increase in W linearly as a function of k, defined as the total number of

irregular interactions an agent has had with a lemma (such that W
t

= W(t=0) + k). Even

this moderate expansion of W shifts the location of the transition: lower frequencies are

able to remain irregular where they eventually regularised given a static value of W (Figure

4).
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Figure 4: Naming Game with linear expansion of the forgetting window. The
graph on the left shows the probability that the system will end up in a state with some
positive fraction of irregularity (⇢s

I

) plotted against frequency, f . Results for three di↵erent
initial fractions of irregularity are shown (⇢0

I

). The graph on the right shows the average
value of ⇢s

I

as a function of f , again for three di↵erent initial values of ⇢0
I

. In this case, where
the forgetting window is expanded, the frequency at which lemmas can remain irregular
given an entirely irregular start state (⇢0

I

= 0) reduces considerably, from f ⇡ 0.02 in 3
to f ⇡ 0.016. The stable end state with an expanding window also exhibits an important
qualitative di↵erence: verbs resolve to either entirely regular or irregular states.

More importantly, each f in a given system with an expanding window resolves to a

completely regular or irregular state, with no agents remaining in the M state. Therefore,

in the case of an expansion of W , P(⇢s
I

> 0) (in Figure 4, left) can be conceptualised as the

probability that a given system will resolve to a completely irregular state. Accordingly,

the mean value of ⇢s
I

> 0 is either 1 or 0 in all cases (Figure 4, right). The discontinuous
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transition is more abrupt with expansion (with ⇢
I

= 0 or 1 for all verbs) than for no

expansion or for replacement, since some verbs remain entirely irregular given a high enough

frequency.

A comparison of no expansion and linear expansion shows that lemmas which would

regularise without expansion remain irregular if W expands. Figure 5 shows a time series

of linear expansion. The stabilisation of the irregular state for f = 0.016 is particularly

evident in a time series, which shows a dip indicating that agents begin to revert to the

regular form, but in re-encountering the irregular form in interaction, their windows expand

and the lemma recovers to the fully irregular form across the population3. While this

frequency best illustrates important di↵erences between a static W and a value of W

which grows linearly, the specific value of f which illustrates this is dependent primarily

on the initial value of W across the population. Section 3.3.3 will provide a framework

which allows for more detailed consideration of alternative values of a static W and how

these change the transition frequency.

3.3.3 Theoretical treatment

In order to fully understand the dynamics of regularity, it is important to consider how

models might behave with slightly di↵erent parameters than the ones presented in the

simulations above. Colaiori et al. (2015) provide a detailed theoretical treatment of the

replacement case, showing that given a specific set of interaction rules and a constant

replacement rate, the nature and location of a frequency dependent transition can be

predicted. In particular, when interactions take place according to the rules laid out in

Table 1, a discontinuous transition between a fully regular state (for low frequencies) and

a largely irregular state (for high frequencies) occurs at a critical frequency

f
c

=
r

n
c

, (1)

where r is the replacement rate and n
c

⇡ 0.058 is an analytically derived numerical con-

stant.

Results above show that implementing memory constraints yields a very similar pattern

3More extreme expansion of the window (e.g., quadratic expansion, Wt = Wt(last) + k, or exponential
Wt = W + 2k) leads to dynamics similar to linear expansion, although e↵ects are more extreme. Since the
value of W grows more drastically, the critical frequency of fc is lower, and quickly hits ceiling e↵ects (such
that, for example, there is little di↵erence between quadratic and exponential expansion).
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Figure 5: Time series of ⇢
I

for f = 0.016 for the Naming Game models with no expansion
and linear expansion. In the case of expansion, the lemma begins to regularise and then
recovers to the irregular form around t = 150 as agents’ windows start to expand.

of behaviour. However, we present a more detailed theoretical treatment below in order to

both understand important subtle di↵erences between replacement and a static window,

and also to consider the more complex case of an expanding window. This treatment allows

for some predictions of the behaviour of a system, particularly in terms of the transition

frequency at which verbs regularise, for di↵erent values of W other than the somewhat

arbitrary value used in the simulations presented above.

A reasonable justification of the similarity between replacement and forgetting, in par-

ticular in the case of static value of W , is that W plays a role analogous to the inverse of

the replacement rate (1/r) in the dynamics: in a time interval 1/r, on average, one agent

is replaced by a new agent in the regular state. Likewise in a time interval W , on average,

one agent forgets the irregular form and switches to the regular state. According to this

argument one should expect a transition at a frequency:

f
c

=
1

Wn
c

. (2)

In other words, the higher the value of W , the lower the critical frequency (f
c

) at which
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irregular verbs can remain stable over time and across the population. Put di↵erently, if

the memory of agents is improved, increasingly lower frequency items can remain stably

irregular within their shared language. A comparison with simulation results (see Fig. 6)

shows that the prediction of Eq. 2 correctly captures the dependence of the transition

frequency on the forgetting time W . However, there is also a considerable mismatch:

the theoretical prediction is approximately 10 times larger than the value obtained in the

simulations.

This discrepancy is due to the fact that encountering a lemma “refreshes” the memory

and resets the time of the forgetting event to zero. As Figure 7 illustrates, even though W

has a constant value, due to recurring refresh events, the total time spent by an agent in

the irregular state before forgetting is larger than W .

We define as We↵ the typical e↵ective time for an agent to forget the irregular form of

a lemma. Inserting its value in Eq. 2 provides a more accurate estimate of the transition

frequency:

f
c

=
1

We↵(fc)nc

, (3)

where we have made explicit the dependence of We↵ on f . Since We↵ � W , Eq. 3 predicts

a critical frequency smaller than Eq. 2.

In the Appendix, we report a brief analytical treatment, which provides a formula

(Eq. 10) for the value of We↵ as a function of W and f . Inserting this expression into

Eq. 3 one obtains a nonlinear equation for the frequency f
c

, which can be easily solved

graphically (plotting the left and right hand sides of the equation separately as a function

of f and determining the intersection point) for any value of W . The values obtained in this

way are compared with simulation results in Fig. 6, displaying a much better agreement

than the naive theory4 (Eq. 2).

In the case where W is not fixed, a theoretical approach taking into account the ex-

pansion would be considerably more complicated. However, simulations (Fig. 6) show that

the di↵erence in f
c

between no expansion and linear expansion is not large and tends to

decrease as W increases.
4The analytical estimates are o↵ by a factor ⇡ 1.5, which is acceptable in this case, given that the theory

includes no fitting parameters.
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Figure 6: Behaviour of f
c

vs. W . Comparison of the transition frequency f
c

(in the
case of no expansion, black circles) determined in simulations as a function of W , with
theoretical estimates obtained with a naive theory (Eq. 2, green diamonds) and a more
refined theory (blue triangles) . For completeness also the value of f

c

in the case of linear
expansion is displayed (Eq. 3, red squares).
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Figure 7: Representation of refresh events

4 Discussion & Conclusions

Using the mechanisms of replacement and general memory constraints, our models have

shown that individual biases combined with interaction among a population lead to system-

wide rule dynamics where highly frequent items can remain stably irregular. These results

indicate that the sort of frequency dependent decay predicted by Lieberman et al. (2007)

only occurs under a certain frequency threshold. Moreover, the patterns observed echo

those found in a larger diachronic sample of English (Cuskley et al., 2014). Both a constant

influx of child learners in a population and individual constraints on agent memory lead

to a discontinuous transition in regularity, with more frequent verbs retaining a stable

irregular form while less frequent verbs tend to regularise. In accordance with results for

child learner bias, we found that memory constraints lead to a system where di↵erent initial

conditions and specific frequencies resolve to (ir)regularity with a probability, rather than

deterministically. In other words, two separate evolutions with the same initial conditions

may resolve to completely di↵erent outcomes for the same frequency. Finally, we presented

a theoretical framework which allows for the estimate of the critical transition frequency

given particular memory constraints.

These models represent an initial step in understanding the dynamics of linguistic rules

which function across complex populations. Our goal was to make this first step simple

by considering a small, closed population which is homogenously mixed. However, in the

future, this approach could be used to examine how di↵erent social network structures may

lead to divergent linguistic rules (e.g., burnt in British English and burned in American

English; Michel et al., 2011), how di↵erent types of learners might e↵ect rule dynamics
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di↵erently (Cuskley et al., 2015), and how linguistic rules evolve and spread over growing or

shrinking populations. This framework could be expanded to examine more general cases

of contact dynamics in language (Weinreich, 1963; Thomason, 2001; Bakker & Matras,

2013), with the potential to address specific quantitative questions in sociolinguistics: for

instance whether an influx of non-native adult speakers leads to decreased morphological

complexity (Lupyan & Dale, 2010), or indeed, how linguistic rules and systems diverge to

the point of creating entirely new languages (e.g., Creoles and Pidgins; Michaelis, Maurer,

Haspelmath, & Huber, 2013).

The individual mechanisms at work could also be further specified, by giving “child”

agents more nuanced biases refined by learning, or refining the memory window to be more

commensurate with actual memory systems. Finally, these two biases could be combined

to investigate the di↵erences between child and adult learners, with di↵erent memory

constraints to account for di↵erences in child and adult language acquisition (Gathercole &

Baddeley, 2014; Cuskley et al., 2015). More generally, while our models sought to examine

the dynamics of existing rule sets over time, a further step would be to extend work

examining how rules and exceptions emerge in the first place (Kirby, 2001), a question

with particular relevance for language evolution (Michel et al., 2011). Our application

of the NG framework to linguistic rules highlights broadly how agent-based models of

interaction, coordination, and cultural transmission can be applied to a diverse array of

collective linguistic, cultural, and cognitive phenomena.
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6 Appendix

The e↵ective time We↵ necessary for an agent to forget the irregular form of a lemma can

roughly be estimated (see Fig. 7) as:

We↵ ' ht
e

in
r

(4)
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Here ht
e

i is the average number of time steps separating two successive refresh events, while

n
r

is the average number of such refresh events before a forgetting event.

To compute these two quantities we start by defining p
not

, the probability not to have

a refresh event at a given time; pW
not

is then the probability to forget before a refresh event

occurs. Hence the probability p
r

that a given agent will experience a refresh event before

forgetting is:

p
r

= 1� pW
not

. (5)

The probability to have a refresh event at a given time is proportional to the interaction

frequency f and to the e↵ective density of irregulars in the population. This e↵ective

density is best captured as ⇢
I

+⇢
M

/2, since agents in the M state have an equal probability

of using the R or I form in interaction. Given this, we can estimate p
not

as p
not

'
1� f(⇢

I

+ ⇢
M

/2). This allows us to calculate the average number of refresh events before

a forgetting event occurs:

n
r

=
1X

k=0

kpk
r

(1� p
r

) , (6)

and the average time between two successive refresh events as:

ht
e

i =
W�1X

k=0

kpk
not

(1� p
not

) (7)

that after some algebra turn out to be

n
r

= p
r

/(1� p
r

) = (1� pW
not

)/pW
not

, (8)

and

ht
e

i = (1� pW
not

)/(1� p
not

)�WpW�1
not

. (9)

Inserting the results for n
r

and for ht
e

i into Eq. 4 we get

We↵ ' (1� pW
not

)2

pW
not

(1� p
not

)
� W (1� pW

not

)

p
not

, (10)

with

p
not

' 1� f
⇣
⇢
I

+
⇢
M

2

⌘
. (11)
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